Cell surface changes and enzyme release during hypoxia and reoxygenation in the isolated, perfused rat liver

نویسندگان

  • J J Lemasters
  • C J Stemkowski
  • S Ji
  • R G Thurman
چکیده

We examined the effects of hypoxia and reoxygenation in isolated, perfused rat livers. Hypoxia induced by a low rate of perfusion led to near anoxia confined to centrilobular regions of the liver lobule. Periportal regions remained normoxic. Within 15 min, anoxic centrilobular hepatocytes developed surface blebs that projected into sinusoids through endothelial fenestrations. Periportal hepatocytes were unaffected. Both scanning and transmission electron microscopy suggested that blebs developed by transformation of preexisting microvilli. Upon reoxygenation by restoration of a high rate of perfusion, blebs disappeared. Other changes included marked shrinkage of hepatocytes, enlargement of sinusoids, and dilation of sinusoidal fenestrations. There was also an abrupt increase in the release of lactate dehydrogenase and protein after reoxygenation, and cytoplasmic fragments corresponding in size and shape to blebs were recovered by filtration of the effluent perfusate. We also studied phalloidin and cytochalasin D, agents that disrupt the cytoskeleton. Both substances at micromolar concentrations caused rapid and profound alterations of cell surface topography. We conclude that hepatic tissue is quite vulnerable to hypoxic injury. The morphological expression of hypoxic injury seems mediated by changes in the cortical cytoskeleton. Reoxygenation causes disappearance of blebs and paradoxically causes disruption of cellular volume control and release of blebs as cytoplasmic fragments. Such cytoplasmic shedding provides a mechanism for selective release of hepatic enzymes by injured liver tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxia-reoxygenation induced necroptosis in cultured rat renal tubular epithelial cell line

Objective(s): The aim of this study is to explore the potential role of hypoxia/reoxygenation in necroptosis in cultured rat renal tubular epithelial cell line NRK-52E, and further to investigate its possible mechanisms.Materials and Methods: Cells were cultured under different hypoxia-reoxygenation conditions                        in vitro. MTT assay was used to measure the cell proliferation...

متن کامل

Effect of 3,4-Methylenedioxymethamphetamine on Liver CYP2C19 Enzyme Activity in Isolated Perfused Rat Liver Using Omeprazole Probe

  Background and purpose: This study aimed at investigating the effects of 3,4-Methyl​enedioxy​methamphetamine (MDMA) on liver cytochrome 2C19 enzyme activity, which is a major liver enzyme in the metabolism of a wide range of drugs, using omeprazole as a probe of the CYP2C19 activity in isolated perfused rat liver. Materials and methods: This experimental study was done in 20 male Sprague–Da...

متن کامل

Sustained Hypoxic Pulmonary Vasoconstriction in the Isolated Perfused Rat Lung: Effect of α1-adrenergic Receptor Agonist

Background: Alveolar hypoxia induces monophasic pulmonary vasoconstriction in vivo, biphasic vasoconstriction in the isolated pulmonary artery, and controversial responses in the isolated perfused lung. Pulmonary vascular responses to sustained alveolar hypoxia have not been addressed in the isolated perfused rat lung. In this study, we investigated the effect of sustained hypoxic ventilation o...

متن کامل

Quantitative evaluation of hemodynamic parameters during acute alveolar hypoxia and hypercapnia in the isolated ventilated-perfused rabbit lung

Introduction: Acute respiratory disorders such as obstructive pulmonary diseases and hypoventilation may lead to alveolar hypoxia and hypercapnia which their effects on pulmonary vascular beds are controversial. The aim of this study was to establish the isolated perfused lung setup and investigate the effects of alveolar hypoxia and hypercapnia on pulmonary vascular resistance. Methods: White ...

متن کامل

Protection against hypoxic injury in isolated-perfused rat heart by ruthenium red.

Changes in intracellular calcium content and energy production during the period of hypoxia appear to be necessary for the development of cellular injury. Ruthenium red, a hexavalent dye which inhibits the active uptake of calcium by mitochondria, might improve a cell's energy status thereby minimizing hypoxic injury. Rat heart tissue was perfused retrogradely with Krebs-Henseleit medium contai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 97  شماره 

صفحات  -

تاریخ انتشار 1983